LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

U.G. DEGREE EXAMINATION – **ALLIED**

FOURTH SEMESTER – **APRIL 2023**

UPH 4401 – APPLIED PHYSICS

Date: 04-05-2023

Dept. No.

Max. : 100 Marks

Time: 09:00 AM - 12:00 NOON

	SECTION A - K1 (CO1)			
	Answer ALL the Questions(10 x 1 = 10)			
1.	Answer the following			
a)	Write down any two examples of semiconductors.			
b)	Define LDR.			
c)	Convert (24) ₁₀ into a binary number.			
d)	Draw the logic symbol of OR gate.			
e)	What are the characteristics of LASER?			
2.	Fill in the blanks			
a)	Intrinsic semiconductor is called			
b)	The principle of a solar cell is			
c)	In NAND gate, the output will be low when both the inputs are			
d)	In IC 741, pin 2 is			
e)	LASER works on the principle of			
	SECTION A - K2 (CO1)			
	Answer ALL the Questions(10 x 1 = 10)			
3.	True or False			
a)	Steel is an insulator.			
b)	LED consume more electricity.			
c)	The NOT gate is also known as an inverter.			
d)	There are two outputs in an Op -Amp.			
e)	He-Ne is a four level laser.			
4.	Match the following			
a)	Compound semiconductor - invert the input			
b)	Threshold frequency - $\overline{X} + \overline{Y}$			
c)	Inverting Op-Amp - GaAs			
d)	X.Y - optical pumping			
e)	Ruby Laser - photoelectric effect			
	SECTION B - K3 (CO2)			
	Answer any TWO of the following $(2 \times 10 = 20)$			
5.	a) What is biasing? (2)			
	b) Explain the forward and reverse biasing of a P-N junction diode and draw the characteristic			
	curve. (8)			
6.	With neat diagrams explain the construction and working principle of photo diode and photo			
	transistor.			
7.	Convert			
	a) $(1021)_{10}$ to binary (2)			
L				

	b) (934) ₁₀ to octal	(2)		
	c) $(111001)_2$ to Hex	(2)		
	d) $(111011)_2$ to decimal	(2)		
	e) $(1101011.1011)_2$ to decimal	(2)		
8.	With neat circuit diagrams, explain the working of inverting and non-inverting amplif	ier operations		
of Op-Amp.				
	$\frac{SECHONC - K4}{(CO3)}$	$2 \times 10 = 20$		
9.	a) What is a semiconductor?	(2)		
	b) Describe the classification of semiconductors.	(8)		
10.	a) Simplify $Y = \overline{A} \overline{B} + \overline{A} B$	(3)		
	b) $F(A,B,C) = ABC + \overline{A} \overline{B}C + \overline{A} BC + AB\overline{C} + \overline{A} \overline{B}\overline{A} \overline{C}$	(7)		
11.	a) Write down the characteristics of LASER.	(4)		
	b) Discuss spontaneous and stimulated emission of radiation.	(6)		
12.	Discuss the working of an Op-Amp as an integrator and differentiator.			
	SECTION D – K5 (CO4)			
	Answer any ONE of the following (1	$1 \ge 20 = 20$		
13.	Describe the construction and working principle of Nd:YAG laser with energy level di	iagram.		
14.	a) Explain the working of a Zener diode with neat diagram.	(12)		
	b) Describe how a Zener diode can be used for voltage (8)]	regulation.		
	SECTION E – K6 (CO5)			
	Answer any ONE of the following (1	$1 \ge 20 = 20$		
15.	a) With neat diagrams and truth tables, show that NAND is a universal gate.	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H 	(10)		
15. 16.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers (E9)_H (FFFF)_H (604)_H (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15. 16.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15. 16.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		
15.	 a) With neat diagrams and truth tables, show that NAND is a universal gate. b) Convert the following hexadecimal numbers to decimal numbers i. (E9)_H ii. (FFFF)_H iii. (604)_H iv. (3FC.8)_H Explain the operation of an Op-Amp as summing and difference amplifiers. 	(10)		